LBS: reshaping handsets from the inside out

Charles Abraham
Wireless Asia

As today's handsets and consumer devices become more sophisticated, manufacturers continue to incorporate more and more functionality into a small and sleek form factor. Today's range of smartphones incorporate voice and data transceivers, GPS, Bluetooth, Wi-Fi, cameras, music, touchscreen interfaces, compasses, motion sensors, cameras, storage cards, and many other technologies. Free turn-by-turn navigation services, such as offered on Google Android phones and iPhones, have created a compelling reason for many of us to own a GPS-equipped smartphone.

The pressure on manufacturers to integrate so many functions into one small printed circuit board has fueled a race among semiconductor suppliers to offer new solutions combining GPS and wireless connectivity. Phones that are small and comfortable to hold mean less and less space available for the internal electronics. Large screen sizes and the trend to thinner and thinner devices means smaller, less efficient antennas, placing pressure on chip designers to improve integrated circuit (IC) performance to make up for antenna constraints.

Finally, cost competition in these markets is intense, as operators compete to bring more users online.

These forces have shaped several changes in the wireless semiconductors found in new smartphones. Three important enabling technologies are:

  • Reduced-geometry semiconductor technologies,
  • Wafer-scale packaging
  • Combo chip integration.

Let's look at the trends in each area.

Pages

Commentary

5G and data center-friendly network architectures

Matt Walker / MTN Consulting

Webscale and transmission network operators' interests are aligning as the 5G era dawns

Matt Walker / MTN Consulting

Webscale and transmission network operators' interests are aligning as the 5G era dawns

Rémy Pascal / Analysys Mason

The launch of 5G by South Korean operators serves as a first benchmark for other operators around the world